Projectively bounded Fréchet measures
نویسندگان
چکیده
منابع مشابه
Projectively Bounded Fréchet Measures
A scalar valued set function on a Cartesian product of σ-algebras is a Fréchet measure if it is a scalar measure independently in each coordinate. A basic question is considered: is it possible to construct products of Fréchet measures that are analogous to product measures in the classical theory? A Fréchet measure is said to be projectively bounded if it satisfies a Grothendieck type inequali...
متن کاملR-bounded Fuzzy Measures Are Equivalent to Ε-possibility Measures
Traditional probabilistic description of uncertainty is based on additive probability measures. To describe nonprobabilistic uncertainty, it is therefore reasonable to consider non-additive measures. An important class of non-additive measures are possibility measures, for which μ(A ∪ B) = max(μ(A), μ(B)). In this paper, we show that possibility measures are, in some sense, universal approximat...
متن کاملConvex Risk Measures Beyond Bounded Risks
This work addresses three main issues: Firstly, we study the interplay of risk measures on L∞ and Lp, for p ≥ 1. Our main result is a one-to-one correspondence between law-invariant closed convex risk measures on L∞ and L1. This proves that the canonical model space for the predominant class of law-invariant convex risk measures is L1. Secondly, we provide the solution to the existence and char...
متن کاملThe Fréchet Derivative of an Analytic Function of a Bounded Operator with Some Applications
The main result in this paper is the determination of the Fréchet derivative of an analytic function of a bounded operator, tangentially to the space of all bounded operators. Some applied problems from statistics and numerical analysis are included as a motivation for this study. The perturbation operator increment is not of any special form and is not supposed to commute with the operator at ...
متن کاملVector Valued Measures of Bounded Mean Oscillation
The duality between Hl and BMO, the space of functions of bounded mean oscillation (see [JN]), was first proved by C. Fefferman (see [F], [FS]) and then other proofs of it were obtained . Using the atomic decomposition approach ([C], [L]) the author studied the problem of characterizing the dual space of Hl of vector-valued functions . In [B2] the author showed, for the case SZ = {Iz1 = 1}, tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1996
ISSN: 0002-9947,1088-6850
DOI: 10.1090/s0002-9947-96-01625-x